Idioma: ES
datos.jpg

Maestría en Ciencia de Datos

Información General

Presentación

Uso del análisis descriptivo, predictivo y prescriptivo de datos como herramienta de soporte para dar solución a situaciones y problemáticas reales.

datos.jpg click para reproducir video
Maestría en Ciencia de Datos en la Escuela: los datos al servicio de las organizaciones.

Análisis de datos como herramienta para la toma de decisiones en las organizaciones

La Maestría en Ciencia de Datos de la Universidad Escuela Colombiana de Ingeniería Julio Garavito forma magísteres con capacidad de solucionar problemas empresariales por medio del entendimiento, la transformación y el modelamiento de grandes volúmenes de datos.

“El magíster en Ciencia de Datos asumirá un papel crítico en las organizaciones, buscando que la toma de decisiones genere competitividad empresarial”.

Ingeniero Wilmer Edicson Garzón Alfonso

Director

El compromiso de la Escuela es formar a los estudiantes de la Maestría en Ciencia de Datos con fuertes bases técnicas y científicas, competencias en la identificación de oportunidades, habilidades en el uso de modelos y herramientas para la solución de problemas, conocimiento de la perspectiva de negocio y liderazgo en las organizaciones, a través de la sinergia de la ingeniería industrial, la ingeniería de sistemas y la matemática. La institución lo logra por medio de una educación teórico-práctica rigurosa, laboratorios con infraestructura de punta, convenios internacionales y desarrollo de la investigación en el área del programa.

Reseña histórica del programa

La Universidad Escuela Colombiana de Ingeniería Julio Garavito ofrece la Maestría en Ciencia de Datos desde 2020, como respuesta a un mercado laboral que evidencia la necesidad de formar expertos que apliquen sus conocimientos en áreas como finanzas, marketing, gestión de operaciones, logística y supply chain, entre otras.

Desde las decanaturas de Matemáticas, Ingeniería de Sistemas e Ingeniería Industrial se propone la creación de la Maestría en Ciencia de Datos, ofrecida en las modalidades de investigación y profundización. Dichas decanaturas lideran las tres áreas del conocimiento en ciencia de datos, a saber: Estadística y Matemáticas, Tecnología y Computación, y Conocimiento del Negocio; responden no sólo a las importantes necesidades del mercado colombiano y mundial de formar expertos en ciencia de datos, sino al crecimiento académico e investigativo de la Escuela, aprovechando las fortalezas que cada una de ellas ha consolidado a lo largo de los últimos años.

La Maestría en Ciencia de Datos tiene como objetivo formar magísteres con capacidad de analizar e interpretar situaciones y problemáticas reales, abstraer información relevante y llevar a cabo proyectos de investigación de tipo aplicado, haciendo uso del análisis descriptivo, predictivo y prescriptivo de datos como herramienta de soporte para dar solución a dichas problemáticas. Además, el profesional que decida cursar el programa propuesto recibirá bases científicas que le permitan generar, apropiarse y aplicar conocimiento, enfocado en resolver problemas del sector productivo y académico, bien sean de carácter social, económico, político o interdisciplinar.

De manera general, el graduado de la Maestría en Ciencia de Datos será un profesional responsable de recolectar, analizar e interpretar grandes cantidades de datos para identificar formas de ayudar a mejorar la operación del negocio y ganar competitividad frente a otras empresas. Así mismo, ocupará un papel crítico para las organizaciones, extraerá información a partir de datos para explorar y definir problemas que necesitan ser resueltos y combinará sus habilidades técnicas para resolver retos que tendrán diferentes grados de dificultad. Quien opte por la modalidad de profundización desarrollará competencias específicas en la investigación aplicada para la solución de problemas empresariales por medio del entendimiento, la transformación y el modelamiento de datos; y quien elija la modalidad de investigación, se hará competente para generar conocimiento científico.

Horario

  • Viernes de 6:30 a.m. a 7:30 p.m.
  • Sábados de 7:00 a.m. a 6:00 p.m. El horario definitivo depende de la selección de las asignaturas en cada periodo académico
  • Se implementan metodologías de clase acordes a la naturaleza de las asignaturas: Las clases pueden ser presenciales o remotas sincrónicas.
  • Algunas actividades académicas como conferencias, talleres y seminarios pueden desarrollarse en horarios especiales.
  • Los cursos de la Escuela Internacional de Verano pueden tener un horario especial hasta las 9:30 p.m. y podrán desarrollarse en  modalidad presencial y remota sincrónica, según la programación de cada curso.

Intensidad

El año académico tiene un total de 40 semanas efectivas de trabajo:

  • Primer periodo de 16 semanas (enero a mayo).
  • Periodo intermedio de 8 semanas (junio y julio).
  • Segundo periodo de 16 semanas (agosto a diciembre).

*Por cada hora presencial se deben dedicar por lo menos tres horas de estudio y trabajo fuera de clase.

Requisitos de grado

  • Aprobar el plan de estudios.
  • Obtener la calificación aprobatoria en las asignaturas.
  • Cumplir la Declaración de Principios, el Reglamento Estudiantil de Posgrados y las reglamentaciones del programa.
  • Entregar a la Biblioteca de la Escuela un trabajo de grado aprobado.
  • Someter un artículo en una revista, científica o de divulgación, preferiblemente indexada.
  • Sustentar públicamente el trabajo de grado.
  • Cursar el programa en un tiempo máximo de 5 años.

Registro Calificado

  • Snies 109405
  • Registro calificado Resolución N.° 008278 del 28 de mayo de 2020.
  • Vigencia de la resolución 7 años.

Solicite información

Maestría en Ciencia de Datos

Admisiones

INSCRIPCIONES ABIERTAS

Maestría en Ciencia de Datos

  • Del 6 de marzo al 14 de julio de 2023. Inscripciones
  • Del 26 de mayo al 14 de julio de 2023. (Depende del programa). Citación a entrevistas

REQUISITOS

  • Entregar documentación de inscripción completa.
  • Presentar pruebas diagnósticas de admisión y entrevista.

Calendario de admisiones

Maestría en Ciencia de Datos: periodo académico 2023-2

  • 1
    Inscripciones Del 6 de marzo al 14 de julio de 2023.
  • 2
    Citación a entrevistas Del 26 de mayo al 14 de julio de 2023. (Depende del programa).
  • 3
    Entrevista Del 29 de mayo al 21 de julio de 2023.
  • 4
    Examen diagnóstico Del 16 de marzo al 15 julio de 2023.
  • 5
    Respuesta de admisión Del 16 de marzo al 25 de julio de 2023.
  • 6
    Solicitud de homologación Del 16 de marzo al 16 de agosto de 2023.
  • 7
    Inscripción de asignaturas Del 5 de julio al 12 de agosto de 2023.
  • 8
    Publicación órdenes de matrícula Del 5 de julio al 12 de agosto de 2023.
  • 9
    Pago ordinario en una cuota Del 5 de julio al 14 de agosto de 2023.
  • 10
    Pago ordinario en dos cuotas 1° cuota: del 5 de julio al 3 de agosto de 2023. / 2° cuota: del 4 de agosto al 4 de octubre de 2023.
  • 11
    Inducción 10 de agosto de 2023.
  • 12
    Inicio de clases A partir del 14 de agosto de 2023.
  • 13
    Firma de matrícula Hasta el 18 de agosto de 2023.

Perfil del aspirante

mujer profesional
  • Ingenieros industriales, civiles, electricistas, electrónicos, mecánicos o de sistemas; matemáticos, administradores de empresas, economistas y profesionales de áreas afines que tengan fundamentación en estadística o conocimientos básicos en análisis de datos.
  • Profesionales con interés en profundizar sus conocimientos y perfeccionar sus habilidades en la transformación, análisis y modelamiento de datos, con el fin de solucionar problemas de los sectores productivo y académico.
  • Actitud propositiva para resolver desafíos locales, regionales, nacionales e internacionales en temas relacionados con la ciencia de datos.
  • Aptitud para dialogar o interactuar con profesionales de diferentes áreas, con el fin de fortalecer la interdisciplinariedad, necesaria para el desarrollo de la investigación.

Plan de Estudios

Créditos por modalidad
Componente Profundización Investigación
Institucionales 2 2
Obligatorias 21 21
Electivas 9 7
Trabajo de Grado 8 10
Total 40 40

Las asignaturas electivas serán seleccionadas por el estudiante con la asesoría de su profesor consejero, de acuerdo con sus intereses personales, la orientación deseada y la programación establecida semestralmente por la Escuela.
Esto incluye la posibilidad de tomar electivas de otros énfasis y de otros programas.

Clasificación de asignaturas

Institucionales

Créditos 2

Obligatorias

Créditos 21

Electivas

Créditos 9

Trabajo de Grado

Créditos 8

Asignaturas

  • SEFP(M)

Seminario Formulación Proyectos

Créditos
1
Cerrar
  • SEFP(M)
  • Créditos 1
  • Institucionales

Seminario Formulación Proyectos

Hoy en día se reconoce y reitera la importancia que dentro de las Organizaciones reviste el apropiado Desarrollo y la efectiva Gerencia de los Proyectos. Es por esto que, en la actualidad, las organizaciones requieren de profesionales, que conozcan, apliquen y manejen exitosamente los principios, prácticas, modelos, procesos y herramientas universalmente aceptadas para el desarrollo y gerencia de sus proyectos.

  • Horas Presenciales 12,0
  • CTES(M)

Ciencia, Tecnología y Sociedad

Créditos
1
Cerrar
  • CTES(M)
  • Créditos 1
  • Institucionales

Ciencia, Tecnología y Sociedad

Con el estudio de esta asignatura se busca desarrollar las competencias necesarias para comprender la realidad social, económica y política del país en los estudiantes de maestría. El objetivo del curso es analizar y comprender los aspectos sociales del fenómeno científico-tecnológico, para identificar los problemas derivados de la falta de generación, apropiación y aplicación del conocimiento. El enfoque de la asignatura es interdisciplinar; en su estudio confluyen las ciencias sociales, económicas y la investigación.

  • Horas Presenciales 12,0
  • PRAD(M)

Probabilidad para análisis de datos

Créditos
3
Cerrar
  • PRAD(M)
  • Créditos 3
  • Obligatorias

Probabilidad para análisis de datos

La probabilidad es el lenguaje natural en el cual se presentan y se pueden abarcar distintos problemas para el análisis de datos provenientes de las nuevas tecnologías, de ahí la importancia de saber manejar las nociones básicas teóricas entorno a esta área. Durante el curso se desarrollarán competencias en conceptos teóricos y del lenguaje propio de la probabilidad para poder aplicarla estructuradamente a problemas cotidianos.

  • Horas Presenciales 36,0
  • MOET(M)

Modelos estadísticos

Créditos
3
Cerrar
  • MOET(M)
  • Créditos 3
  • Obligatorias

Modelos estadísticos

Curso en el que se profundiza en los conceptos teóricos básicos y en el lenguaje propio de los Modelos Estadísticos para poder aplicarlos estructuradamente a problemas de cualquier ámbito, de tal manera se permitirá un reconocimiento de las aplicaciones estadísticas fundamentales.

  • Horas Presenciales 36,0
  • PGAD(M)

Programación para el análisis de datos

Créditos
3
Cerrar
  • PGAD(M)
  • Créditos 3
  • Obligatorias

Programación para el análisis de datos

Curso en el que se implementan lenguajes de programación que permiten desarrollar con éxito proyectos de análisis de datos en cualquiera de sus etapas.

  • Horas Presenciales 36,0
  • MLEA(M)

Machine learning

Créditos
3
Cerrar
  • MLEA(M)
  • Créditos 3
  • Obligatorias

Machine learning

El curso apunta a desarrollar habilidades en “Machine Learning”, usando métodos como teoría de aprendizaje computacional e inteligencia artificial para extraer relaciones previamente desconocidas de grandes bases de datos. De manera que al finalizar el curso, los estudiantes serán capaces de sintetizar redes neuronales y métodos basados en árboles para extraer relaciones de bases de datos previamente desconocidas, evaluar el método apropiado de Machine Learning basado en el tipo de datos y problema a desarrolla y analizar de manera crítica la efectividad de los diferentes métodos de Machine Learning.

  • Horas Presenciales 36,0
  • BDAT(M)

Big Data

Créditos
3
Cerrar
  • BDAT(M)
  • Créditos 3
  • Obligatorias

Big Data

Con la masificación de las tecnologías móviles, bases de datos, redes sociales e internet, se hace cada vez más complicado administrar y estudiar la información. Big Data nace como una nueva estrategia tecnológica de análisis y visualización de grandes volúmenes de información.
Durante el curso se darán a conocer los conceptos básicos de Big Data y su situación en el contexto colombiano. También se aprenderán a aplicar los conceptos básicos de Big Data en proyectos de tecnología como soluciones a situaciones reales.

  • GDAT(M)

Gestión de datos

Créditos
3
Cerrar
  • GDAT(M)
  • Créditos 3
  • Obligatorias

Gestión de datos

Ahora más que nunca los datos se han convertido en uno de los activos más valiosos para las organizaciones, por lo tanto, la transformación de los datos en información realmente valiosa para la organización, su entendimiento, administración y uso adecuado se convierten hoy en uno de los principales retos de las instituciones. En esta asignatura identificaremos los componentes base de la gestión de datos partiendo de la Estrategia de Datos hasta llegar a la administración certera de los mismos.

  • Horas Presenciales 36,0
  • TDEM(M)

Toma de decisiones organizacionales

Créditos
3
Cerrar
  • TDEM(M)
  • Créditos 3
  • Obligatorias

Toma de decisiones organizacionales

En el entorno empresarial actual existe la necesidad de conocer y entender las decisiones organizacionales y su respectivo impacto en cada área de la empresa. Para lograrlo se hace necesario incluir en la organización una estrategia de análisis de los datos global en la que toda la organización esté alineada en la importancia de los datos, para alcanzar realmente un impacto en los resultados de la organización. En el curso se desarrollarán competencias para tomar decisiones efectivas y diferenciadoras, en los niveles estratégicos y tácticos, basadas en la comprensión de modelos, de algoritmos y de la estructura organizacional. Lo anterior para aplicar y desarrollar estrategias bajo consideraciones conceptuales y técnicas que integren métodos propios de la Ciencia de Datos.

  • Horas Presenciales 36,0
  • ELCT(N)

Electivas

Créditos
9
Cerrar
  • ELCT(N)
  • Créditos 9
  • Electivas

Electivas

En este programa se deben cursar un total de 9 créditos en electivas.


Para más información, consultar en la pestaña "Detalle de electivas".

  • SMIN(M)

Seminario de Metodologías de Investigación

Créditos
1
Cerrar
  • SMIN(M)
  • Créditos 1
  • Trabajo de Grado

Seminario de Metodologías de Investigación

La asignatura enseña los fundamentos teóricos, metodológicos y estructurales de las estrategias de investigación. El objetivo es desarrollar capacidades en los estudiantes, para la resolución de problemas de investigación disciplinar, mediante el diseño de proyectos, en el marco de la apropiación y generación de conocimiento.

  • PPTG(M)

Propuesta de Trabajo de Grado

Créditos
1
Cerrar
  • PPTG(M)
  • Créditos 1
  • Trabajo de Grado

Propuesta de Trabajo de Grado

El trabajo de grado se desarrolla de manera gradual y por etapas. Inicia con el Seminario de metodologías de investigación, que se desarrolla en las primeras ocho (8) semanas del primer semestre. Continúa la formulación de la propuesta del Proyecto de Grado, con la asesoría del director del proyecto, durante las segundas ocho (8) semanas del mismo semestre. Al finalizar el primer semestre se presenta la propuesta de proyecto de grado para evaluación por pares. Los créditos de seminario de metodología de la investigación y propuesta de trabajo de grado, no tienen nota numérica, y su evaluación es de aprobado o no aprobado, por el profesor de la asignatura, y el comité de la maestría, respectivamente.

  • DYEVP(M)

Desarrollo y Evaluación - Profundización

Créditos
4
Cerrar
  • DYEVP(M)
  • Créditos 4
  • Trabajo de Grado

Desarrollo y Evaluación - Profundización

.

  • ENFI(M)

Entrega Final

Créditos
2
Cerrar
  • ENFI(M)
  • Créditos 2
  • Trabajo de Grado

Entrega Final

.

Seleccione una clasificación de asignaturas para ver el contenido disponible

Total de créditos del programa: 40

Clasificación de asignaturas

Institucionales

Créditos 2

Obligatorias

Créditos 21

Electivas

Créditos 7

Trabajo de Grado

Créditos 10

Asignaturas

  • CTES(M)

Ciencia, Tecnología y Sociedad

Créditos
1
Cerrar
  • CTES(M)
  • Créditos 1
  • Institucionales

Ciencia, Tecnología y Sociedad

Con el estudio de esta asignatura se busca desarrollar las competencias necesarias para comprender la realidad social, económica y política del país en los estudiantes de maestría. El objetivo del curso es analizar y comprender los aspectos sociales del fenómeno científico-tecnológico, para identificar los problemas derivados de la falta de generación, apropiación y aplicación del conocimiento. El enfoque de la asignatura es interdisciplinar; en su estudio confluyen las ciencias sociales, económicas y la investigación.

  • Horas Presenciales 12,0
  • SEFP(M)

Seminario Formulación Proyectos

Créditos
1
Cerrar
  • SEFP(M)
  • Créditos 1
  • Institucionales

Seminario Formulación Proyectos

Hoy en día se reconoce y reitera la importancia que dentro de las Organizaciones reviste el apropiado Desarrollo y la efectiva Gerencia de los Proyectos. Es por esto que, en la actualidad, las organizaciones requieren de profesionales, que conozcan, apliquen y manejen exitosamente los principios, prácticas, modelos, procesos y herramientas universalmente aceptadas para el desarrollo y gerencia de sus proyectos.

  • Horas Presenciales 12,0
  • PRAD(M)

Probabilidad para análisis de datos

Créditos
3
Cerrar
  • PRAD(M)
  • Créditos 3
  • Obligatorias

Probabilidad para análisis de datos

La probabilidad es el lenguaje natural en el cual se presentan y se pueden abarcar distintos problemas para el análisis de datos provenientes de las nuevas tecnologías, de ahí la importancia de saber manejar las nociones básicas teóricas entorno a esta área. Durante el curso se desarrollarán competencias en conceptos teóricos y del lenguaje propio de la probabilidad para poder aplicarla estructuradamente a problemas cotidianos.

  • Horas Presenciales 36,0
  • MOET(M)

Modelos estadísticos

Créditos
3
Cerrar
  • MOET(M)
  • Créditos 3
  • Obligatorias

Modelos estadísticos

Curso en el que se profundiza en los conceptos teóricos básicos y en el lenguaje propio de los Modelos Estadísticos para poder aplicarlos estructuradamente a problemas de cualquier ámbito, de tal manera se permitirá un reconocimiento de las aplicaciones estadísticas fundamentales.

  • Horas Presenciales 36,0
  • PGAD(M)

Programación para el análisis de datos

Créditos
3
Cerrar
  • PGAD(M)
  • Créditos 3
  • Obligatorias

Programación para el análisis de datos

Curso en el que se implementan lenguajes de programación que permiten desarrollar con éxito proyectos de análisis de datos en cualquiera de sus etapas.

  • Horas Presenciales 36,0
  • MLEA(M)

Machine learning

Créditos
3
Cerrar
  • MLEA(M)
  • Créditos 3
  • Obligatorias

Machine learning

El curso apunta a desarrollar habilidades en “Machine Learning”, usando métodos como teoría de aprendizaje computacional e inteligencia artificial para extraer relaciones previamente desconocidas de grandes bases de datos. De manera que al finalizar el curso, los estudiantes serán capaces de sintetizar redes neuronales y métodos basados en árboles para extraer relaciones de bases de datos previamente desconocidas, evaluar el método apropiado de Machine Learning basado en el tipo de datos y problema a desarrolla y analizar de manera crítica la efectividad de los diferentes métodos de Machine Learning.

  • Horas Presenciales 36,0
  • BDAT(M)

Big Data

Créditos
3
Cerrar
  • BDAT(M)
  • Créditos 3
  • Obligatorias

Big Data

Con la masificación de las tecnologías móviles, bases de datos, redes sociales e internet, se hace cada vez más complicado administrar y estudiar la información. Big Data nace como una nueva estrategia tecnológica de análisis y visualización de grandes volúmenes de información.
Durante el curso se darán a conocer los conceptos básicos de Big Data y su situación en el contexto colombiano. También se aprenderán a aplicar los conceptos básicos de Big Data en proyectos de tecnología como soluciones a situaciones reales.

  • GDAT(M)

Gestión de datos

Créditos
3
Cerrar
  • GDAT(M)
  • Créditos 3
  • Obligatorias

Gestión de datos

Ahora más que nunca los datos se han convertido en uno de los activos más valiosos para las organizaciones, por lo tanto, la transformación de los datos en información realmente valiosa para la organización, su entendimiento, administración y uso adecuado se convierten hoy en uno de los principales retos de las instituciones. En esta asignatura identificaremos los componentes base de la gestión de datos partiendo de la Estrategia de Datos hasta llegar a la administración certera de los mismos.

  • Horas Presenciales 36,0
  • TDEM(M)

Toma de decisiones organizacionales

Créditos
3
Cerrar
  • TDEM(M)
  • Créditos 3
  • Obligatorias

Toma de decisiones organizacionales

En el entorno empresarial actual existe la necesidad de conocer y entender las decisiones organizacionales y su respectivo impacto en cada área de la empresa. Para lograrlo se hace necesario incluir en la organización una estrategia de análisis de los datos global en la que toda la organización esté alineada en la importancia de los datos, para alcanzar realmente un impacto en los resultados de la organización. En el curso se desarrollarán competencias para tomar decisiones efectivas y diferenciadoras, en los niveles estratégicos y tácticos, basadas en la comprensión de modelos, de algoritmos y de la estructura organizacional. Lo anterior para aplicar y desarrollar estrategias bajo consideraciones conceptuales y técnicas que integren métodos propios de la Ciencia de Datos.

  • Horas Presenciales 36,0
  • ELCT(N)

Electivas

Créditos
7
Cerrar
  • ELCT(N)
  • Créditos 7
  • Electivas

Electivas

En este programa se deben cursar un total de 7 créditos en electivas.


Para más información, consultar en la pestaña "Detalle de electivas".

  • SMIN(M)

Seminario de Metodologías de Investigación

Créditos
1
Cerrar
  • SMIN(M)
  • Créditos 1
  • Trabajo de Grado

Seminario de Metodologías de Investigación

La asignatura enseña los fundamentos teóricos, metodológicos y estructurales de las estrategias de investigación. El objetivo es desarrollar capacidades en los estudiantes, para la resolución de problemas de investigación disciplinar, mediante el diseño de proyectos, en el marco de la apropiación y generación de conocimiento.

  • PPTG(M)

Propuesta de Trabajo de Grado

Créditos
1
Cerrar
  • PPTG(M)
  • Créditos 1
  • Trabajo de Grado

Propuesta de Trabajo de Grado

El trabajo de grado se desarrolla de manera gradual y por etapas. Inicia con el Seminario de metodologías de investigación, que se desarrolla en las primeras ocho (8) semanas del primer semestre. Continúa la formulación de la propuesta del Proyecto de Grado, con la asesoría del director del proyecto, durante las segundas ocho (8) semanas del mismo semestre. Al finalizar el primer semestre se presenta la propuesta de proyecto de grado para evaluación por pares. Los créditos de seminario de metodología de la investigación y propuesta de trabajo de grado, no tienen nota numérica, y su evaluación es de aprobado o no aprobado, por el profesor de la asignatura, y el comité de la maestría, respectivamente.

  • DYEVI(M)

Desarrollo y Evaluación - Investigación

Créditos
6
Cerrar
  • DYEVI(M)
  • Créditos 6
  • Trabajo de Grado

Desarrollo y Evaluación - Investigación

Desarrollo y Evaluación - Investigación

  • ENFI(M)

Entrega Final

Créditos
2
Cerrar
  • ENFI(M)
  • Créditos 2
  • Trabajo de Grado

Entrega Final

.

Seleccione una clasificación de asignaturas para ver el contenido disponible

Total de créditos del programa: 40

Clasificación de asignaturas

Electivas disponibles

  • EDIG(M)

Economía digital

Créditos
3
Cerrar
  • EDIG(M)
  • Créditos 3
  • Electivas disponibles

Economía digital

*

  • Horas Presenciales 36,0
  • INEG(M)

Inteligencia de negocios

Créditos
4
Cerrar
  • INEG(M)
  • Créditos 4
  • Electivas disponibles

Inteligencia de negocios

*

  • Horas Presenciales 48,0
  • MIND(M)

Minería de Datos

Créditos
3
Cerrar
  • MIND(M)
  • Créditos 3
  • Electivas disponibles

Minería de Datos

En los últimos años, los avances tecnológicos de los computadores en cuanto a capacidad de procesamiento y de almacenamiento han hecho que las organizaciones acumulen día a día grandes volúmenes de datos. Sin embargo, es muy poco lo que las empresas hacen para explotar la inmensa riqueza de información que hay ahí. Este curso busca introducir al estudiante a los fundamentos y técnicas principales de minería de datos que se utilizan para analizar los datos y extraer conocimiento. Así como el conocimiento y dominio de alguna herramienta computacional que le permitan hacer proceso de minería de datos.

  • MDDM(M)

Modelos de decisión en mercados

Créditos
3
Cerrar
  • MDDM(M)
  • Créditos 3
  • Electivas disponibles

Modelos de decisión en mercados

*

  • Horas Presenciales 36,0
  • TDIG(M)

Transformación digital

Créditos
3
Cerrar
  • TDIG(M)
  • Créditos 3
  • Electivas disponibles

Transformación digital

*

  • Horas Presenciales 36,0
  • VDAT(M)

Visualización de datos

Créditos
3
Cerrar
  • VDAT(M)
  • Créditos 3
  • Electivas disponibles

Visualización de datos

*

  • Horas Presenciales 36,0
Seleccione una clasificación de asignaturas para ver el contenido disponible

Total de créditos del programa: 40

Perfil del profesional

_DSC4898_jST5opq-detalle.jpg
  • Capacidad para generar soluciones a problemas interdisciplinares con pensamiento autónomo, crítico y argumentativo.
  • Desarrollo de competencias específicas en la investigación aplicada para la solución de problemas empresariales por medio del entendimiento, la transformación y el modelamiento de datos.
  • Habilidades para generar, transformar y divulgar conocimiento científico.
  • Graduado de una institución con acreditación de alta calidad otorgada por el Ministerio de Educación Nacional.
  • Magíster responsable de recolectar, analizar e interpretar grandes cantidades de datos para identificar formas de ayudar a mejorar la operación del negocio y ganar competitividad frente a otras empresas.
Wilmer Garzón

Profesores de planta

La Escuela se distingue por educar a partir del ejemplo: sus profesores son conscientes del valor de la calidad humana, se comprometen con el aprendizaje de cada estudiante y permanecen alineados con los objetivos de la institución. También, están a la vanguardia en conocimiento, investigan y publican en ediciones científicas, forman parte de la industria, participan en eventos académicos y empresariales y tienen reconocimientos nacionales e internacionales.

Profesores de cátedra

La Escuela vincula a profesores comprometidos con el fortalecimiento de los valores, la excelencia, la creatividad y la innovación y la convergencia de actividades académicas, progreso social y difusión del conocimiento.

Lo que piensa la comunidad

LILIAN DANIELA SUAREZ RIVEROS

"La Escuela me permitió formarme por medio de la Beca Julio Garavito Armero, con profesionales increíbles a nivel académico y personal. Igualmente, me está dando la posibilidad de estudiar una maestría con apoyo económico. Me siento orgullosa de ser parte de esta comunidad".

Lilian Daniela Suárez Riveros

Matemática.

Programas relacionados